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A heterogeneous computing accelerated SCE-UA global

optimization method using OpenMP, OpenCL, CUDA, and

OpenACC

Guangyuan Kan, Xiaoyan He, Liuqian Ding, Jiren Li, Ke Liang

and Yang Hong
ABSTRACT
The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has

been successfully applied in various kinds of scientific and engineering optimization applications,

such as hydrological model parameter calibration, for many years. The algorithm possesses good

global optimality, convergence stability and robustness. However, benchmark and real-world

applications reveal the poor computational efficiency of the SCE-UA. This research aims at the

parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing

technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and

OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and

parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results

indicate the parallel SCE-UA significantly improves computational efficiency compared to the original

serial version. The OpenCL implementation obtains the best overall acceleration results however,

with the most complex source code. The parallel SCE-UA has bright prospects to be applied in

real-world applications.
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INTRODUCTION
Global optimization is a hot but difficult issue in scientific
research and engineering applications, such as hydrological

model parameter optimization. It has been widely recognized
that the achievement of a stable global optimum for highly
complex benchmarks and real-world applications is still chal-

lenging. Issues, such as local minimums, high dimensionality,
and premature convergence, etc., have become major
obstacles for appropriate solution of optimization problems.
To overcome these obstacles, many optimization methods

and algorithms have been proposed. These include grid
search, Monte Carlo random search, genetic algorithm, par-
ticle swarm optimization, SCE-UA (shuffled complex

evolution optimization developed at the University of Ari-
zona), etc. A huge number of optimization methods have
been developed and applied in various kinds of scientific
research and engineering applications; however, only a small

number of methods perform satisfactorily in highly complex
and nonlinear real-world applications such as hydrological
model parameter optimization. Among these methods and

algorithms, SCE-UA has been widely accepted and used in
scientific and engineering optimization applications,
especially for hydrological model parameter global calibration
(Duan ; Li et al. , ; Dong et al. ; Kan et al. a,
b, a, b, c, d, e; Zuo et al. ). It fea-
tures good global optimality, stable robustness, and excellent
consistency. Therefore, the SCE-UA method has been recog-

nized as an effective and robust tool for solving the above-
mentioned obstacles, to some extent.
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Even though SCE-UA has achieved great success in

many fields, it still faces a severe computational efficiency
issue when the optimization problem is highly complex. It
needs to carry out large numbers of objective function evalu-

ations during the evolution process. Taking the hydrological
model parameter optimization as an example, it needs to
repeatedly run the hydrological model to obtain the objec-
tive function values in each iteration. The computational

burden is very high. It usually takes days or even weeks to
finish the optimization task and this situation is not accepta-
ble. The SCE-UA method is usually implemented by using

serial programming and computing technology, such as
serial Fortran, C/Cþþ, and MATLAB, etc. For complex
optimization problems such as hydrological model par-

ameter automatic calibration, the computational load is
very high and the execution speed of the serial code is too
slow. The computational efficiency of the SCE-UA needs
to be improved and researchers have made some efforts to

improve it. There are mainly two ways: one is the improve-
ment of the algorithm itself (Wang et al. ; Gong et al.
, ; Zhang et al. ) and the other is acceleration

by using parallel computing supported new generation
multi-core CPUs (central processing units) and many-core
GPUs (graphics processing units) (Sharma et al. ;

Muttil et al. ; Kan et al. a, b, c, d,
e). For the improvement of the algorithm itself it is
necessary to introduce an artificial neural network or

other data-driven surrogate model to mimic the objective
function response surface. The selection of the surrogate
model may affect the optimization accuracy and this
operation has the possibility of optimization accuracy

deterioration. The improvement of computational efficiency
by using surrogate models has a computational efficiency
upper limit which is limited by the specifically selected

surrogate model. If users want to further improve the com-
putational efficiency they have to select simpler surrogate
models and this may lead to the deterioration of optimiz-

ation accuracy. Acceleration by using highly parallel
computing hardware, such as multi-core CPUs and many
core GPUs, does not face the above-mentioned problems.

It is based on algorithm parallelization and parallel pro-
gramming technology. It can achieve satisfactory speedup
ratio without loss of optimization accuracy. The only cost
is the parallel algorithm implementation by using new pro-

gramming techniques such as OpenMP and CUDA.
The accelerationof theSCE-UAbyusingmulti-coreCPUs

andmany-coreGPUs based onOpenMPandCUDAhas been

proposed and tested in previous literature.However, there are
many popular parallel programming techniques, such as
OpenMP, OpenCL, CUDA, and OpenACC, which can be

applied to the implementation of the parallel SCE-UA.
Performances and code complexities of different implemen-
tations may vary significantly. To achieve effective and

efficient use of the parallel SCE-UA, it is of great importance
to make comparisons and give some useful guidelines for
the selection and utilization of different parallel programing
techniques. Unfortunately, further investigations of

the parallel SCE-UA method, such as parallel algorithm
implementations by using different popular parallel program-
ming techniques, like OpenMP, OpenCL, CUDA, and

OpenACC, andperformance comparisons, have not been car-
ried out. To carry out more in-depth research on the parallel
SCE-UA and compare algorithm performances and code

complexities of different implementations,weproposed apar-
allel SCE-UA method and implemented it on an Intel Xeon
multi-core CPU and NVIDIA Tesla many-core GPU by
using OpenMP, OpenCL, CUDA (NVIDIA Corporation

), and OpenACC. Performance tests of the serial and par-
allel SCE-UA were carried out based on the Griewank
benchmark function to test the execution speed, optimization

accuracy, robustness, and consistency. The source codes of
OpenMP, OpenCL, CUDA, and OpenACC implementations
were also analyzed to study the relationship between the

speedup ratio and source code complexity. Someuseful guide-
lines are given to potential users of parallel SCE-UA to help
them achieve better acceleration results.
SERIAL SCE-UA

The original serial SCE-UA is based on a synthesis of four
concepts: (1) combination of deterministic and probabilistic

approaches; (2) systematic evolution of a ‘complex’ of points
spanning the parameter space, in the direction of global
improvement; (3) competitive evolution (Holland );

and (4) complex shuffling (Duan et al. , ; Sorooshian
et al. ). A general description of the steps of the SCE-UA
is given below (a more detailed presentation can be found in
Duan et al. (, )).

(1) Generate sample. Sample s points randomly in the feas-
ible parameter space and compute the criterion value at

each point. In the absence of prior information on the
approximate location of the global optimum, use a uni-
form probability distribution.

(2) Rank points. Sort the s points in order of increasing cri-
terion value so that the first point represents the smallest
www.manaraa.com
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criterion value (assuming that the goal is to minimize

the criterion value).
(3) Partition into complexes. Partition the s points into p

complexes, each containing m points. The complexes

are partitioned such that the first complex contains
every p(k – 1)þ 1 ranked point, the second complex con-
tains every p(k – 1)þ 2 ranked point, and so on, where
k¼ 1, 2, …, m.

(4) Evolve each complex. Evolve each complex according
to the competitive complex evolution (CCE) algorithm
(which is elaborated upon below).

(5) Shufflecomplexes.Combine thepoints in theevolvedcom-
plexes into a a single sample population; sort the sample
population in order of increasing criterion value;

re-partition the sample population into p complexes
according to the procedure specified in Step 3.

(6) Check convergence. If any of the convergence criteria
(stated below) are satisfied, stop; otherwise, return to

Step 4.

The SCE-UA method iterates to converge towards the

global optimal point. Therefore, it should be stopped by
using some termination criteria to indicate the arrival of
the optimal point. The criteria discussed below were used

in this research.

(a) Objective function convergence: The objective function

convergence indicates that the search should be stopped
when the algorithm is unable to further improve the
objective function value over a pre-specified number of

iterations (Kstop). This is implemented by:

fi � fi�1

fi

����
���� � Toleranceobj

where fi and fi-1 denote the objective function val-

ues at the ith and i-1th shuffling loop, respectively;
Toleranceobj denotes the objective function convergence
criterion value.

(b) Parameter convergence: When the algorithm cannot sig-
nificantly change the parameter values over one or more
iterations, the search should be stopped. The parameter

convergence criterion is as follows:

ρ(j)i � ρ(j)i�1

ρ(j)max � ρ(j)min

�����

����� � Toleranceparam

where ρ(j)i and ρ(j)i�1 denote the jth parameter values at the
ith and i-1th shuffling loop, respectively; ρ(j)max and ρ(j)min
denote the jth parameter’s maximum and minimum

values, respectively; Toleranceparam denotes the par-
ameter convergence criterion value.

(c) Maximum objective function evaluations: Maximum

objective function evaluations is used as a backup to pre-
vent wasting computing resources. If the number of
objective function evaluations exceeds this criterion

value, the search is stopped.

The CCE algorithm, based on the Nelder & Mead ()

simplex downhill search scheme, is presented briefly as
follows.

(I) Construct a subcomplex by randomly selecting q
points from the complex according to a trapezoidal
probability distribution. The probability distribution

is specified such that the best point has the highest
chance of being chosen to form the subcomplex,
and the worst point has the least chance.

(II) Identify the worst point of the subcomplex and com-

pute the centroid of the subcomplex without
including the worst point.

(III) Attempt a reflection step by reflecting the worst point

through the centroid. If the newly generated point is
within the feasible space, go to Step IV; otherwise,
randomly generate a point within the feasible space

and go to Step VI.
(IV) If the newly generated point is better than the worst

point, replace the worst point by the new point. Go
to Step VII. Otherwise, go to Step V.

(V) Attempt a contraction step by computing a point
halfway between the centroid and the worst point.
If the contraction point is better than the worst

point, replace the worst point by the contraction
point and go to Step VII. Otherwise, go to Step VI.

(VI) Randomly generate a point within the feasible space.

Replace the worst point by the randomly generated
point.

(VII) Repeat Steps II–VI α times, where α� 1 is the

number of consecutive offspring generated by the
same subcomplex.

(VIII) Repeat Steps I–VII β times, where β� 1 is the
number of evolution steps taken by each complex

before complexes are shuffled (Duan et al. ).
PARALLEL SCE-UA

The principle of the parallel SCE-UA method is stated as fol-
lows and its flow chart is demonstrated in Figure 1.
www.manaraa.com



Figure 1 | Flow chart of the parallel SCE-UA method.

1643 G. Kan et al. | Heterogeneous computing accelerated SCE-UA method Water Science & Technology | 76.7 | 2017
(1) Generate sample in parallel. Create s parallel executed
threads; in each thread sample a point randomly in the

feasible parameter space and compute the criterion
value at this point. In the absence of prior inform-
ation, use a uniform probability distribution. For

OpenMP and OpenACC implementations, this step is
implemented through a for loop which is decorated by
the ‘#pragma omp parallel for’ OpenMP directive and
the ‘#pragma acc kernels loop’ OpenACC directive.

For OpenCL and CUDA implementations, this step is
implemented by using the OpenCL kernel and the
CUDA kernel.

(2) Rank points. Sort the s points in parallel in order of
increasing criterion value. For OpenMP and OpenACC
implementations, this step is implemented by the hand-
written parallel radix sort C/Cþþ code. For OpenCL

implementation, this step is implemented by using
the open source Boost.Compute library. For CUDA
implementation, this step is implemented by using the

open source NVIDIA thrust library.
(3) Partition into complexes. Partition the s points into p

complexes, each containing m points. The complexes
are partitioned such that the first complex contains

every p(k – 1)þ 1 ranked point, the second complex con-
tains every p(k – 1)þ 2 ranked point, and so on, where
k¼ 1, 2, …, m. This step is run in serial.

(4) Evolve each complex. Create p parallel executed threads;
in each thread evolve each complex according to theCCE
www.manaraa.com
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algorithm described above. For OpenMP and OpenACC

implementations, this step is implemented through a for
loop which is decorated by the ‘#pragma omp parallel
for’ OpenMP directive and the ‘#pragma acc kernels

loop’ OpenACC directive. For OpenCL and CUDA
implementations, this step is implemented by using the
OpenCL kernel and the CUDA kernel.

(5) Shuffle complexes. Combine the points in the evolved

complexes into a single sample population (this is run
in serial); sort the sample population in order of increas-
ing criterion value (this is run in parallel, the same as

Step 2); re-partition the sample population into p com-
plexes according to the procedure specified in Step 3
(this is run in serial).

(6) Check convergence. If any of the pre-specified conver-
gence criteria are satisfied, stop; otherwise, return to
Step 4. This step is run in serial.
HARDWARE AND SOFTWARE USED IN THIS STUDY

In this study, the performance tests were carried out based
on the Intel Xeon E5-2640v2 CPU and the NVIDIA Tesla

K40c GPU. The CPU and GPU were hosted by a HP Z820
workstation. The hardware used in this study is listed in
Table 1.

This study was based on the Microsoft Windows 7 plat-
form. The source code was developed under the Microsoft
Visual Studio 2010 Integrated Development Environment

(IDE). The serial and OpenMP codes were developed by
using the Microsoft Visual Cþþ 2010 compiler with
OpenMP supported. The OpenCL and CUDA codes were
developed by using the NVIDIA NVCC compiler, OpenCL

1.2, and CUDA 6.5. The OpenACC code was developed by
using the PGI Accelerator workstation C/Cþþ 15.10 compi-
ler with OpenACC supported (this compiler is run under the

Cygwin by using the command shell).
Table 1 | Hardware used in this study

Computer name Device name Device d

HP Z820 CPU: Intel Xeon E5-2640v2 8 physic
comp

GPU1: NVIDIA Tesla K40c 2,880 co
precis

GPU2: NVIDIA Quadro K6000 2,880 C
System memory: Samsung DDR3 32GB E
Hard drive disk: West Digital 1TB SA
RESULTS AND DISCUSSION

The serial and parallel SCE-UA methods were tested based

on the Griewank benchmark problems. The performances
were compared and the sensitivity was analyzed based on
the testing results. As the calculation of the Griewank
benchmark function is very fast and cannot mimic the

heavy computational burden of the complex problem’s
objective function, such as hydrological model simulation,
we added four kinds of arithmetic operations after the cal-

culation of the Griewank function for each objective
function evaluation. These operations include nobj
additions, nobj subtractions, nobj multiplications, and

nobj divisions of a dummy temporary variable. For the
GPU version SCE-UA, the time consumed by the
memory transfer is considered in the total execution time

to ensure a fair comparison between the CPU and GPU
versions.

The Griewank benchmark function is a relatively hard
problem for optimization algorithms. It has lots of local

minima which confuse the algorithm making the problem
much harder. The Griewank function is as follows and the
global minimum is 0 and is at the origin:

f(x) ¼
Xnopt

i¼1

x2i
d
�

Ynopt

i¼1

cos (xi=
ffiffi
i

p
)þ 1

� 600 � xi � 600, i ¼ 1, . . . , nopt, d ¼ 600

where xi denotes the ith decision variable; nopt denotes the
number of decision variables.

We carried out six comparisons which are shown below.

(1) Comparison of execution time of serial, OpenMP,
OpenCL, CUDA, and OpenACC SCE-UA.

The execution time of the different SCE-UA
implementations are listed in Figure 2. The execution
time of the serial SCE-UA varied from 93.7 s to

90,233.0 s. The execution time of the OpenMP SCE-UA
www.manaraa.com
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Figure 2 | Execution time of serial, OpenMP, OpenCL, CUDA, and OpenACC SCE-UA.
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varied from 23.2 s to 6,028.3 s. The execution time of
the OpenCL CPU SCE-UA varied from 12.5 s to
773.3 s. The execution time of the OpenCL GPU

SCE-UA varied from 92.2 s to 634.0 s. The execution
time of the CUDA SCE-UA varied from 93.5 s to
645.0 s. The execution time of the OpenACC SCE-UA
varied from 94.4 s to 627.4 s. We can see that the
serial SCE-UA runs very slowly. The OpenMP version

runs faster than the serial version. The OpenCL CPU
version runs faster than the OpenMP version. The
www.manaraa.com
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GPU versions (including the OpenCL GPU, CUDA,

and OpenACC versions) run very fast when the
number of complexes became very large and run
slower than the serial version when the number of

complexes is small. When the number of complexes
increased, the CPU versions (including the serial,
OpenMP and OpenCL CPU versions) consumed
more and more time. However, the execution time of

the GPU versions did not change significantly.
(2) Comparison of speedup ratio of OpenMP, OpenCL,

CUDA, and OpenACC SCE-UA versus serial SCE-UA.

The speedup ratio of different SCE-UA implemen-
tations are listed in Figure 3. The speedup ratio of the
OpenMP SCE-UA varied from 3.59× to 15.80×. The

speedup ratio of the OpenCL CPU SCE-UA varied
from 6.65× to 136.84×. The speedup ratio of the
OpenCL GPU SCE-UA varied from 0.86× to 230.60×.
The speedup ratio of the CUDA SCE-UA varied from

0.84× to 213.59×. The speedup ratio of the OpenACC
SCE-UA varied from 0.83× to 198.61×. We can see
that with the increasing number of complexes (i.e., the

number of parallel executed threads), the parallel
SCE-UA runs faster than the serial version. For a smaller
number of complexes, the OpenMP and OpenCL CPU

versions run faster. For large numbers of complexes,
the GPU versions run faster. The OpenCL GPU SCE-
UA run faster than the CUDA SCE-UA. The CUDA

SCE-UA run faster than the OpenACC SCE-UA.
(3) Analysis of the impact of objective function compu-

tational load.
Here we fixed nopt to 20 (because SCE-UA are

mostly applied in the field of hydrological model par-
ameter calibration and most hydrological models
have less than 20 parameters) and changed the p (i.e.,

the number of complexes) and nobj (reflecting the
objective function computational load) to test the
impact of objective function computational load on

the speedup ratio. We can see in Figure 4 that with
the increasing of the nobj, the speedup ratio increased.
This means that the speedup ratio can be larger with

increasing objective function computational load.
With the increasing of the p, the GPU versions run
increasingly faster. This fact indicates that the GPU ver-
sions run very fast for large p and the CPU versions run

very fast for small p.
(4) Analysis of impact of error correction code (ECC) set-

ting for GPU device.

The Tesla GPU used in this study supported ECC.
We tested the impact of ECC setting to the execution
time. The execution time ratio of ECC on versus ECC

off is demonstrated in Figure 5. For OpenCL GPU
SCE-UA, the number of ratio large than 1, smaller
than 1, and equal to 1 was 17, 11, and 17 respectively,

whilst for CUDA SCE-UA, it was 14, 17, and 14,
respectively. For OpenACC SCE-UA, the number of
ratio large than 1, smaller than 1, and equal to 1
was 36, 9, and 0, respectively. The results indicate

that from the point of view of average and overall per-
formance, the OpenCL GPU version runs slower
when ECC is on, the CUDA version runs faster

when ECC is on, and the OpenACC version runs
slower when ECC is on. The OpenACC version is
most sensitive to the ECC on setting.

(5) Comparison of source code complexity.
The source code length was analyzed here. The

lengths of the serial, OpenMP, OpenCL CPU, OpenCL
GPU, CUDA, and OpenACC implementations were

941, 941, 1,972, 1,972, 1,402, and 1,005, respectively.
Considering the acceleration results mentioned above,
although the OpenCL versions obtained the highest

overall speedup ratio, they were the most complex
implementation. The CUDA version is the moderate
complex implementation. The complexity of the

OpenMP and OpenACC versions is almost same as
the original serial version.

(6) Comparison of optimization accuracy.

We tested all the optimizations and found that all
optimizations converged to the theoretical global opti-
mum (i.e., the origin). This result indicated that the
optimization accuracy of the parallel SCE-UA is

satisfactory.
CONCLUSIONS

This paper aimed at the parallelization and acceleration of
the SCE-UA method based on powerful heterogeneous com-
puting technology. The parallel SCE-UA was implemented

on an Intel Xeon multi-core CPU (by using OpenMP and
OpenCL) and a NVIDIA Tesla many-core GPU (by using
OpenCL, CUDA, and OpenACC). The serial and parallel
SCE-UA methods were tested based on the Griewank

benchmark function. Comparison results indicate the paral-
lel SCE-UA significantly improved the computation
efficiency compared to the original serial version. The

OpenCL implementation obtained the best overall accelera-
tion results, however it is the most complex source code. The
www.manaraa.com
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Figure 3 | Speedup ratio of OpenMP, OpenCL, CUDA, and OpenACC SCE-UA versus serial SCE-UA.
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Figure 4 | Speedup ratio comparison for different objective function computational load settings.
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Figure 5 | Comparison of execution time ratio of ECC on versus ECC off.
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parallel SCE-UA has bright prospects to be applied in real-

world applications.
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